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It is analyzed when a given space of functions admits a knot insertion algorithm.
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1. INTRODUCTION

Total positivity and its associated variation diminishing property are
closely related to some fundamental questions in approximation theory
(see [13]). For instance, it is well known that B-splines collocation matrices
are totally positive, and some recent papers [6, 7] have shown the strong
relationship between Tchebycheff and weak Tchebycheff systems and
totally positive systems. Totally positive bases have also been found for the
generalized spline spaces of [12, 20], for the L-splines space (see [15]),
and for the Tchebycheffian splines space (see [19, Chap. 9]). The class of
Tchebycheffian splines contains polynomial, exponential, and hyperbolic
splines, among other many classes of splines. Algorithms for Tchebycheffian
splines have been introduced following different approaches: by using
recurrence relations (see [14, 8]) and, more recently, by using techniques
related with blossoming (see [18, 17]), by generalized de Boor�Fix dual
functionals (see [1]), or by integration (see [2, 3]). In this paper we
analyze the role of total positivity in order to construct a knot insertion
procedure in a given space of functions. We can apply our results to the
generalized splines of [12], which contain the mentioned Tchebycheffian
splines and trigonometric splines.

In computer aided geometric design, shape preserving representations
using control polygons are those representations associated with normalized
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totally positive bases (see [11, 4]). The basis with optimal shape preserving
properties has been called the normalized B-basis in [5], where its existence
and uniqueness are proved. Examples of B-bases are the Bernstein basis
and the B-spline basis. When working with a space P of polynomial
splines, given a curve expressed in terms of the B-spline basis of P, knot
insertion allows us to express the curve in terms of other B-spline bases of
spaces containing P, providing more flexibility for the interactive design of
the curve. In this paper we generalize the knot insertion procedure by
replacing the space P by a space U with shape preserving representations
and the B-spline bases by the corresponding normalized B-bases of spaces
containing U.

In [16] it is derived a corner cutting algorithm associated to any
normalized B-basis (called B-algorithm) which is an evaluation algorithm
and satisfies subdivision properties. For instance, de Casteljau algorithm is
a B-algorithm. In [16] it is also proved that the control polygons obtained
after iterating B-algorithms converge to the curve. B-algorithms lead to
normalized B-bases of spaces with greater dimension. In this paper we study
when a B-algorithm also provides a knot insertion algorithm, so that the
concept of B-algorithm, which can be applied to any space admitting shape
preserving representations, unifies three important types of algorithms in
computer aided geometric design: evaluation, subdivision, and knot insertion
algorithms.

In Section 2 we give some basic results and introduce the concepts of
k-admissible parameter and symmetric B-algorithm, which will be key tools
in this paper. In Section 3 we study the structure of the matrices associated
to B-algorithms. In Section 4 we introduce the basic definitions in order to
generalize the concept of knot insertion in a given space with shape preserving
representations. In Section 5 we show, for a given B-algorithm, that the
abstract property of symmetry is equivalent to the fact that it provides a
knot insertion algorithm. In Theorem 6.1 we prove that B-algorithms
corresponding to admissible parameters are always symmetric and there-
fore provide knot insertion algorithms. Although there are B-algorithms
which are not symmetric (as shown in Example 7.1), we include in Section
7 many examples of spaces such that the B-algorithms are symmetric and
so provide knot insertion algorithms.

2. AUXILIARY RESULTS

Let U be a vector space of real functions defined on I�R and let
(u0 , ..., un) be a basis of U. Given D�I, and u # U we shall denote by U|D

the space [u(t) | u # U, t # D]. If a sequence P0 , ..., Pn of points in Rk is
given then we define a curve #(t)=�n

i=0 Pi ui (t), t # I. The points P0 , ..., Pn
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are called control points and the polygon P0 } } } Pn with vertices P0 , ..., Pn

is called the control polygon of #. The system of functions (u0 , ..., un) is
normalized if �n

i=0 ui (t)=1, \t # I. The collocation matrix of (u0(t), ..., un(t)) at
t0< } } } <tm in I is given by

M \u0 , ..., un

t0 , ..., tm + :=(uj (t i)) i=0, ..., m; j=0, ..., n. (2.1)

Clearly, (u0 , ..., un) is normalized and formed by nonnegative functions if
and only if all its collocation matrices are stochastic (that is, nonnegative
and such that the sum of each row is one). We shall use the following
matricial notation. Given an m_n matrix A and :=(:1 , ..., :k), ;=
(;1 , ..., ;l) with 1�:1< } } } <:k�m, 1�;1< } } } <; l�n, we denote by
A[: | ;] the k_l submatrix of A containing rows : and columns ;, and
A[:] :=A[: | :]. The identity matrix of order m will be denoted by Im .
A matrix is totally positive if all its minors are nonnegative and a system
of functions is totally positive when all its collocation matrices (2.1) are
totally positive. It is well known (cf. [11]) that shape preserving represen-
tations of curves by means of control polygons must be associated with
normalized totally positive bases.

The following result for totally positive bases is a consequence of Lemma
2.1 and Proposition 4.1 of [5]:

Proposition 2.1. Let (u0 , ..., un) be a totally positive basis of a vector
space of functions defined on an interval I�R and let I i :=[t # I | ui (t){0].
Then the following properties hold :

(i) The function uj (t)�ui (t) defined on Ii is monotonic increasing
(resp., decreasing) for all j>i (resp., j<i).

(ii) If (u0 , ..., un) is also normalized then, for each i=0, ..., n, Ii is an
interval whose infimum (resp., supremum) :i # R _ [&�] (resp., ;i # R _

[+�]) satisfies

:0�:1� } } } �:n (resp., ;0�;1� } } } �;n). (2.2)

Normalized totally positive bases with optimal shape preserving proper-
ties among all normalized totally positive bases of the space have been
called normalized B-bases: the curve # better imitates the shape of the
control polygon with respect to the normalized B-basis than the shape of
the control polygon with respect to any other normalized totally positive
basis (see [4, 5]). Examples of B-bases are the Bernstein basis in the case
of the space Pk([a, b]) of polynomials of degree less than or equal to n on
an interval [a, b] and the B-spline basis in the case of the corresponding
polynomial spline space.
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In [5] the concept of B-basis was defined in terms of two sequences of
vector subspaces of U,

U=L0(U)#L1(U)# } } } #Ln(U), U=R0(U)#R1(U)# } } } #Rn(U)

(2.3)

(see [5, pp. 641�642] for the definition and construction of these subspaces).

Definition 2.2. A totally positive basis (b0 , ..., bn) is a B-basis if bi #
Li (U) & Rn&i (U), i=0, ..., n.

In Proposition 3.12 of [5] it was given the following characterization of
a B-basis:

Proposition 2.3. Let (u0 , ..., un) be a totally positive basis of a space U
defined on I�R. Then (u0 , ..., un) is a B-basis if and only if the following
conditions hold

inf {u i (t)
u j (t) } t # I, u j (t){0==0, (2.4)

for all i{j.

Taking into account formulae (3.1) and (3.2) of [5] together with
Propositions 3.3 and 3.5 of [5] we can derive the following result:

Proposition 2.4. Let (b0 , ..., bn) be a B-basis of U. Then (bi , ..., bn) is a
basis of Li (U) and (b0 , ..., bi) is a basis of Rn&i (U).

Existence of B-bases and normalized B-bases follows from Remark 3.8
and Theorem 4.2(i) of [5], respectively:

Proposition 2.5. If a vector space of functions has a totally positive
(resp., normalized totally positive) basis then it has a B-basis (resp., a unique
normalized B-basis).

Associated to any normalized B-basis we construct in [16] a corner
cutting algorithm (which we call a B-algorithm) satisfying evaluation and
subdivision properties. On the other hand, the B-algorithm transforms the
control polygon of a curve with respect to a normalized B-basis into the
control polygon with respect to a normalized B-basis of a space with
greater dimension. In this paper we shall analyze the relationship between
B-algorithms and knot insertion algorithms. From now on, we assume that
I�R is an interval and that given t0 # Int(I ) (the interior of I ), I$ :=
(&�, t0] & I and I" :=(t0 , �) & I. Let (u0 , ..., un) be a totally positive
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basis of a vector space U of functions defined on I. Since u0(t), ..., un(t),
t # I$ (resp., t # I"), form a totally positive system, by Proposition 2.5 they
generate a space which has a B-basis (v� 0 , ..., v� r) (resp., (w� 0 , ..., w� s)). Let us
define

vi (t) :={v� i (t)
0

if t # I$
if t # I"

, i=0, ..., r (2.5)

and

wi (t) :={0
w� i(t)

if t # I$
if t # I"

, i=0, ..., s. (2.6)

These functions generate a vector space of functions

V :=span[v0(t), v1(t), ..., vr(t), w0(t), w1(t), ..., ws(t)], t # I. (2.7)

By construction,

U | I$=V | I$ , U| I"=V | I" . (2.8)

It is easy to see that

Li (U)| I$ �Li (U| I$), Rn&i (U)| I" �Rn&i (U| I"), i=0, ..., n. (2.9)

In Proposition 3.1 of [16] it was shown that U�V, that (v0 , ..., vr ,
w0 , ..., ws) is a B-basis of V and that any B-basis of V has this form. In
Theorem 3.3 of the same paper it was shown that if (u0 , ..., un) is a normalized
B-basis of a space U then there exists a normalized B-basis (v0 , ..., vr , w0 , ..., ws)
of the vector space V and that the (r+s+2)_(n+1) matrix M such that

(u0 , ..., un)=(v0 , ..., vr , w0 , ..., ws) M (2.10)

satisfies the following properties:

(i) L :=M[1, ..., r+1] is a lower triangular nonsingular stochastic
totally positive matrix. The elements of M[1, ..., r+1 | r+2, ..., n+1] are
zeros.

(ii) U :=M[r+2, ..., r+s+2 | n&s+1, ...,n+1] is an upper triangular
nonsingular stochastic totally positive matrix. The elements of M[r+2, ...,
r+s+2 | 1, ..., n&s] are zeros.

From (2.10), (2.5), and (2.6) we see that

ui (t)=0, \t # I$, i=r+1, ..., n;
(2.11)

ui (t)=0, \t # I", i=0, ..., n&s&1.
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We also have that

(u0(t), ..., ur(t))=(v0(t), ..., vr(t)) L, \t # I$, (2.12)

and

(un&s(t), ..., un(t))=(w0(t), ..., ws(t)) U, \t # I". (2.13)

Remark 2.6. If (u0 , ..., un) is a normalized B-basis of a space U of func-
tions continuous at t0 we know from (2.11) that the basis functions which
do not vanish at t0 belong to the set [un&s , ..., ur]. Then taking into
account that dim(U | I$)=r+1, dim(U | I")=s+1, (2.11) and Proposition
2.1(ii), we can deduce that ui (t0){0 if and only if i # [n&s, ..., r] and so
the number of functions of the basis nonvanishing at t0 is k=r+s&n+1.

As it is recalled in Section 2 of [16], since L and U (of (2.12) and (2.13),
respectively) are nonsingular stochastic totally positive triangular matrices,
they can be factorized (in a unique way) as

L=Lr&1 Lr&2 } } } L0 ,

1
0 1

. . .
. . .

Ll=\ 0 1 + (2.14)

l (l )
l 1&l (l )

l
. . .

. . .
l (l )

r&1 1&l (l )
r&1

with 0�l (l )
j <1 (for l=0, ..., r&1, j=l, ..., r&1) and

U=Us&1Us&2 } } } U0 ,

u (l )
l 1&u (l )

l. . .
. . .

u (l )
s&1 1&u (l )

s&1

Ul=\ 1 0 + (2.15)
. . .

. . .
1 0

1

with 0<u (l )
j �1 (for l=0, ..., s&1, j=l, ..., s&1).
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These factorizations have an interpretation in terms of corner cutting
algorithms. An elementary corner cutting is a transformation which maps
any polygon P0 } } } Pn into another polygon B0 } } } Bn defined by one of the
following ways

Bj =Pj , j{i,
Bi =(1&*) Pi+*Pi+1 ,

for some i # [0, ..., n&1], 0�*<1

or

Bj=Pj , j{i,
Bi=(1&*) Pi+*Pi&1 ,

for some i # [1, ..., n], 0�*<1.

An elementary corner cutting is defined by a one-banded, nonsingular,
totally positive and stochastic matrix. A corner cutting algorithm is any
composition of elementary corner cuttings. A corner cutting algorithm is
described by a matrix which is nonsingular, totally positive and stochastic,
as a product of the previous ones.

Definition 2.7. Let M, L, U as in (2.10), (2.12), and (2.13). The
B-algorithm associated to t0 is the corner cutting algorithm corresponding
to the factorizations (2.14) and (2.15) of L and U. It transforms the control
polygon of a curve # with respect to the normalized B-basis of U into the
control polygon with respect to the normalized B-basis of V. The left
B-algorithm is the corner cutting algorithm corresponding to (2.14) and the
right B-algorithm is the corner cutting algorithm corresponding to (2.15).

The following definition will play a crucial role in this paper.

Definition 2.8. Let L and U be the matrices associated to the left and
right (respectively) B-algorithm. We say that the B-algorithm is symmetric
if there exists h�min[r, s] such that the factorizations (2.14) and (2.15)
satisfy L=Lr&1 } } } Lr&h (i.e., Lr&h&1 , ..., L0=Ir+1), U=Us&1 } } } Us&h (i.e.,
Us&h&1 , ..., U0=Is+1) and l (r& j)

r&m =u (s& j)
s&m for all j=h, ..., 1 and m= j, ..., 1.

We say that a space U of functions is C j ( j�0) if every u # U is j-times
continuously differentiable. We can also use C instead of C0.

By Remark 2.6 we know that if (u0 , ..., un) is a normalized B-basis of
functions continuous at t0 then the number of basis functions nonvanishing
at t0 is k=r+s+1&n(>0). This allows us to give the following definition.

Definition 2.9. Let U be a vector space of functions defined on I with
a normalized B-basis (u0 , ..., un), let t0 # Int(I ) and let k be the number of
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basis functions which do not vanish at t0 . We say that t0 is a k-admissible
parameter in U if (u0 , ..., un) satisfies the following properties:

(A) There exists =>0 such that U is Ck&1 in (t0&=, t0+=)�I.

(B) det(u ( j)
i (t0)) i=n&s, ..., r; j=0, ..., k&1 {0.

Properties (A) and (B) of Definition 2.9 are clearly satisfied by all param-
eters of the interior of the interval of definition of polynomial B-splines.
More examples with generalized B-splines will appear in Section 7.

Remark 2.10. Let us observe that, by (2.11) and property (A) of Definition
2.9, for each i=0, ..., n&s&1 or i=r+1, ..., n, ui has null derivatives at t0

up to order k&1. Then one can easily deduce that with (A), property (B)
holds if and only if there exist fi # U, i=0, ..., k&1 satisfying f ( j)

i (t0)=0 for
all j<i and f (i)

i (t0){0.

Proposition 2.11. Let U be a vector space of functions defined on I with
a normalized totally positive basis. If t0 is a k-admissible parameter in U then
Ri (U | I$)=Zi | I$ and Li (U | I")=Zi | I" where Z0 :=U and Zi :=[u | u # U,
u( j)(t0)=0, \j�i&1] for each 1�i�k.

Proof. By property (A) of Definition 2.9, the spaces Zi are well defined.
Clearly, Z0 $Z1 $ } } } $Zk and by Remark 2.10 there exists fi # Zi"Zi+1 ,
i=0, ..., k&1. Let (v0 , ..., vr) be a B-basis of U | I$ . By Proposition 2.4,
dim(Ri (U | I$))=r+1&i and from Propositions 2.1(i) and 2.3 one can
deduce that Ri (U | I$)�Zi | I$ . Let f� i :=f i | I$ . It can be easily checked that
(v0 , ..., vr&k , f� k&1 , f� k&2 ..., f� i) (i=k&1, ..., 0) is a linearly independent
system and then Fi :=span[v0 , ..., vr&k , f� k&1 , ..., f� i] is an (r&i+1)-
dimensional space. We can now write

U| I$=Z0 | I$ $F0 #Z1 | I$ $F1 # } } } #Zk&1 | I$ $Fk&1 #Zk | I$ $Rk(U | I$).

(2.16)

Taking into account that dim(U| I$)=r+1, that dim(Fi)=r&i+1, that
dim(Rk(U| I$))=r+1&k and (2.16) we deduce that Zi | I$=Fi for each
i=0, ..., k&1 and dim(Zi | I$)=r+1&i for i=0, ..., k. So Ri (U| I$)=Zi | I$

(0�i�k). Analogously, it can be proved that Li (U| I")=Zi | I" for each
i=0, ..., k. K

Taking into account Propositions 2.4 and 2.11 we can immediately
deduce the following result on the B-basis of U| I$ and U| I" for admissible
parameters.
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Corollary 2.12. Under the hypotheses of Proposition 2.11 if (v� 0 , ..., v� r),
(w� 0 , ..., w� s) are B-bases of U| I$ and U| I" , respectively, then

v� ( j)
r&i(t0)=0, j<i, v� (i)

r&i(t0){0; lim
t � t 0

+
w� ( j)

i (t)=0, j<i, lim
t � t0

+
w� (i)

i (t){0

for all i=0, ..., k&1.

The following result will play a crucial role in Theorem 6.1.

Lemma 2.13. Let (u0 , ..., un) be the normalized B-basis of U. If t0 # Int(I )
is a k-admissible parameter in U then the basis functions un&s , ..., ur (k=
r+s+1&n) which do not vanish at t0 are linearly independent on any
interval J such that t0 # J�I.

Proof. Let :n&s un&s(t)+ } } } +:rur(t)=0, \t # J. Taking into account
property (A) of Definition 2.9 we can write for each j=0, ..., k&1: :n&su ( j)

n&s(t)
+ } } } +:ru ( j)

r (t)=0, \t # J & (t0&=, t0+=). In particular, :n&su ( j)
n&s(t0)

+ } } } +:ru ( j)
r (t0)=0, and from property (B) of Definition 2.9 we deduce

that :n&s= } } } =:r=0. K

3. MATRICES ASSOCIATED WITH B-ALGORITHMS

In the following result we obtain, the structure of the matrices L and U
of (2.12) and (2.13), respectively for admissible parameters.

Theorem 3.1. Let (u0 , ..., un) be the normalized B-basis of a vector space
U of functions defined on I. If t0 # Int(I ) is a k-admissible parameter in U
then the matrices L=(lij)0�i, j�r , U=(uij)0�i, j�s corresponding to the left
and right B-algorithm, respectively are of the form

L=\Ir&k+1

0
0
L� + , U=\U�

0
0

Is&k+1+ , (3.1)

where r+1=dim(U | I$) (resp., s+1=dim(U | I")) and L� (resp., U� ) is a k_k
nonsingular stochastic lower (resp., upper) triangular matrix.

Proof. Let us prove (3.1) for L. Let (v0 , ..., vr , w0 , ..., ws) be the normalized
B-basis of the space V defined in (2.7). From (2.12) we have

(u0(t), ..., ur(t))=(u0(t), ..., ur&k(t), vr&k+1(t), ..., vr(t)) L� , t # I$, (3.2)
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where L� =( Ir&k+1
0

0
L� k

) and L� k :=L[r+2&k, ..., r+1]. It is sufficient to
prove that (u0(t), ..., ur&k(t), vr&k+1(t), ..., vr(t)), t # I$ is a B-basis because
then by the uniqueness up to positive scaling of B-bases (see Corollary
3.9(iii) of [5]) there exists a positive nonsingular diagonal matrix D such
that (u0(t), ..., ur&k(t), vr&k+1(t), ..., vr(t))=(v0(t), ..., vr(t)) D, t # I$ and
then from (2.12) and (3.2) we conclude that L=DL� and the theorem
follows for L. Since (v0 , ..., vr) is the normalized B-basis of U | I$ we know
that vi # Li (U| I$) & Rr&i (U| I$) for all i=r&k+1, ..., r. Since (u0 , ..., un) is a
normalized B-basis of U we know that ui # Li (U) for all i=0, ..., r&k and
by (2.9), ui # Li (U| I$). Thus it remains to see that

ui # Rr&i (U| I$), \i=0, ..., r&k. (3.3)

By Remark 2.6, k=r+s+1&n and then from (2.11) we know that
(u0 , ..., un) is a B-basis of U such that u0(t)= } } } =ur&k(t)=0, \t�t0 . By
property (A) of Definition 2.9, u ( j)

0 (t0)= } } } =u ( j)
r&k(t0)=0 for each

j=0, ..., k&1 and then from Proposition 2.11 we deduce that uj # Rk(U| I$)
for all j=0, ..., r&k. By Proposition 2.4, dim(Rk(U | I$))=r&k+1 and
(v0 , ..., vr&k&1 , vr&k) is a totally positive basis of Rk(U| I$). Since ur&k #
Rk(U| I$) then from Corollary 3.9(i) of [5] we have that ur&k=:vr&k

(:>0) and so the system (v0 , ..., vr&k&1 , ur&k) is a B-basis of Rk(U| I$).
From Proposition 2.3 we can write now that

0=inf { u j (t)
ur&k(t) } t # I, ur&k(t){0==inf { uj (t)

ur&k(t) } t # I$, ur&k(t){0= ,

(3.4)

for each j=0, ..., r&k&1. Therefore, by Proposition 3.5 of [5], uj #
R(Rk(U | I$))=Rk+1(U | I$) for each j=0, ..., r&k&1. Iterating the previous
argument we can get (3.3). A similar proof of (3.1) can be derived for U,
by considering the normalized B-basis of U| I" (w0 , ..., ws) and showing that
the system (w0(t), ..., wk&1(t), ur+1(t), ..., un(t)), t # I" is a B-basis of U| I" .

K

Remark 3.2. Let us observe that the previous theorem shows that,
under its hypotheses, the normalized B-basis (u0 , ..., un) of U and the
normalized B-basis (v0 , ..., vr , w0 , ..., ws) of V satisfy

vi=ui , i=0, ..., r&k; wi=un&s+i , i=k, ..., s. (3.5)

Remark 3.3. Let us observe that, if t0 is a 1-admissible parameter then,
the matrix corresponding to the left B-algorithm is L=Ir+1 . Moreover if
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k>1 and t0 is a k-admissible parameter in U then the factorization (2.14)
of L is of the form

L=Lk&2Lk&3 } } } L0

=\Ir&k+1

0
0

L� k&2+\
Ir&k+1

0
0

L� k&3+ } } } \Ir&k+1

0
0

L� 0+ , (3.6)

where L� =L� k&2L� k&3 } } } L� 0 is the factorization of type (2.14) of the matrix
L� of (3.1). In a similar way, the matrix corresponding to the right B-algo-
rithm is U=Is+1 for 1-admissible parameters and the factorization (2.15)
of U for k-admissible parameters with k>1 is of the form

U=Uk&2Uk&3 } } } U0

=\U� k&2

0
0

Is&k+1+\
U� k&3

0
0

Is&k+1+ } } } \U� 0

0
0

Is&k+1+ , (3.7)

where U� =U� k&2U� k&3 } } } U� 0 is the factorization of type (2.15) of the matrix
U� of (3.1). If k=1 then the B-algorithm is symmetric. If k>1 and we
denote [u~ (l)

l , ..., u~ (l )
k&2 , 1, ..., 1] and [1, ..., 1, 1&l� (l )

l , ..., 1&l� (l )k&2] the
diagonal entries of U� l and L� l then the B-algorithm will be symmetric if and
only if u~ (l )

i =l� (l )
i for all i=l, ..., k&2 and l=0, ..., k&2.

The following two matricial results will be very useful in Section 5.

Lemma 3.4. Let L=(lij)1�i, j�k be a k_k nonsingular stochastic lower
triangular matrix. Let U=(uij)1�i, j�k be the k_k upper bidiagonal
stochastic matrix such that uii=li+1, i for i=1, ..., k&1. If uii {0 for all
i=1, ..., k&1 then U is nonsingular and the matrix X=(xij)1�i, j�k defined
by X=LU &1 satisfies

x1k=(&1)k+1 `
k&1

j=1

1&:j

:j
, x ij=$i, j+1 , i=2, ..., k, (3.8)

where :i :=uii for all i=1, ..., k&1 and $i, j+1 is the Kronecker's delta.

Proof. Since L is stochastic and lower bidiagonal l1 j=$1 j and then the
first row of X coincides with the first row of U&1 and x1k satisfies (3.8). By
the definition of X we have that X[2, ..., k | 1, ..., k]=L[2, ..., k | 1, ..., k] U&1

=U[1, ..., k&1 | 1, ..., k] U&1 and hence we obtain that x ij satisfies (3.8)
for all i=2, ..., k. K

Lemma 3.5. Let L (resp., U ) be a k_k nonsingular stochastic totally
positive lower (resp., upper) triangular matrix. Let L=Lk&2 } } } L0 and
U=Uk&2 } } } U0 be their factorizations (2.14) and (2.15). If u (l )

i =l (l )
i {0 for
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all l=0, ..., k&2, i=l, ..., k&2, then the k_k matrices Xl=(x (l )
ij )1�i, j�k

(0�l�k&2) defined by Xl :=Ll } } } L0U &1
0 } } } U &1

l , satisfy

\i=1, ..., l+1, x(l )
ij =0 if i+ j>k+1,

x (l )
i, k+1&i=(&1)k+i `

k&2

j=i&1

1&: (i&1)
j

: (i&1)
j

(3.9)

\i=l+2, ..., k, x(l )
ij =$i, j+l+1 ,

where : (l )
i =u (l )

i for all l=0, ..., k&2, i=l, ..., k&2.

Proof. Let us first observe that Ll=( Il
0

0
L� k&l

) and U l=( U� k&l
0

0
Il

) where
L� k&l and U� k&l are (k&l )_(k&l ) matrices satisfying the hypotheses of
Lemma 3.4. Since : l

i {0 then U l is nonsingular. Moreover,

U&1
l =\U� &1

k&l

0
0
Il+

and Xl is well defined. We shall prove (3.9) by induction on l. By Lemma
3.4 X0 satisfies (3.9). Let us now suppose that the matrix Xl&1 satisfies
(3.9). Let X� l=(x~ (l )

ij )1�i, j�k be the matrix defined by X� l :=Xl&1U &1
l .

Clearly, Xl=Ll X� l . By considering the structure of U &1
l and the induction

hypothesis we deduce that the last k&l rows of X� l are the first k&l rows of
U&1

l and that X� l[l+1, ..., k | 1, ..., k&l]=U &1
k&l , X� l[l+1, ..., k | k&l+1, ..., k]

=Ok&l, l where Ok&l, l is the (k&l )_(l ) null matrix. We also deduce that
the last l columns of X� l are the last l columns of Xl&1 and then x~ (l )

ij =0 if
i+ j>k+1 and x~ (l )

i, k+1&i=(&1)k+i >k&2
j=i&1 ((1&: (i&1)

j )�: (i&1)
j ) for all

i=1, ..., l.
By considering the structure of Ll and X� l we deduce that the first l rows

of Xl are the first l rows of X� l and then x (l )
ij =x~ (l )

ij and (3.9) holds for
i=1, ..., l. Moreover, Xl[l+1, ..., k | 1, ..., k&l]=L l[l+1, ..., k | 1, ..., k]
X� l[1, ..., k | 1, ..., k&l]=L� k&lU� &1

k&l and Xl[l+1, ..., k | k&l+1, ..., k]=
Ll[l+1, ..., k | 1, ..., k] X� l[1, ..., k | k&l+1, ..., k]=Ok&l, k . By Lemma 3.4,
L� k&lU� &1

k&l satisfies (3.9) and then x (l )
l+1, k&l=(&1)k+l+1 >k&2

j=l ((1&: (l )
j )�

:(l )
j ) and x (l)

ij =$i, j+l+1 for i=l+2, ..., k. K

4. KNOT INSERTION AND B-ALGORITHMS

Let us introduce the basic definitions for knot insertion in a given space
U with shape preserving representations. By supp( f ) we denote the
support of a function f.
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Definition 4.1. Let U be a space of functions defined on I with a
normalized B-basis and t0 # Int(I ). We say that k :=dim(U | I$)+dim(U | I")
&dim(U)(�0) is the potential knot multiplicity in U with t0 .

Definition 4.2. Let Un+1 be an (n+1)-dimensional space of functions
defined on I with a normalized B-basis and t0 # Int(I ) whose potential knot
multiplicity in U is k. Then we say that we perform an elementary knot
insertion with t0 if there exits an (n+2)-dimensional space Un+2

$Un+1

with a normalized B-basis such that Un+2 | I$=Un+1 | I$ and Un+2 | I"=
Un+1 | I" .

Remark 4.3. Let us observe that if we perform an elementary knot
insertion with t0 (whose potential knot multiplicity in Un+1 was k) then
k&1 is the potential knot multiplicity in Un+2 of t0 . So, we can perform
at most k consecutive knot insertions with t0 .

Remark 4.4. If (u0 , ..., un) is a normalized B-basis of functions con-
tinuous at t0 then, by Remark 2.6, the number of basis functions among
u0 , ..., un which do not vanish at t0 coincides with the potential knot multi-
plicity of t0 in U.

The following result shows that the space obtained after a maximal number
of knot insertions coincides with the space obtained after a B-algorithm.

Proposition 4.5. Let U=Un+1 be an (n+1)-dimensional space of
functions defined on I with a normalized B-basis (u0 , ..., un), let t0 # Int(I )
whose potential knot multiplicity in U is k and let V as in (2.7). Let us
assume that we can perform k consecutive knot insertions, obtaining the
spaces

(Un+1�) Un+2� } } } �Un+1+k. (4.1)

Then Un+1+k=V.

Proof. Let r+1=dim(U | I$) and s+1=dim(U | I"). By Definitions 4.1
and 4.2, r+1+s+1=n+k+1(=dim(Un+1+k)). Let (v0 , ..., vr , w0 , ..., ws)
and ( y0 , ..., yr , z0 , ..., zs) be the normalized B-bases of V and Un+1+k, respec-
tively. By Definition 4.2, U| I$=Un+1+k | I$ and U | I"=Un+1+k | I" . By (2.11),
for each i=0, ..., r, yi (t)=0, \t # I" and for each j=0, ..., s, zj (t)=0, \t # I$
and so ( y0 , ..., yr) and (z0 , ..., zs) are totally positive bases of Un+1+k | I$=U| I$

and Un+1+k | I"=U| I" , respectively. Since ( y0 , ..., yr , z0 , ..., zs) is a normalized
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B-basis �r
i=0 y i (t)=1, \t # I$, �s

i=0 zi (t)=1, \t # I" and by Proposition
2.3 it satisfies

0=inf {yi (t)
yj (t) } t # I, yj (t){0==inf {yi (t)

yj (t) } t # I$, yj (t){0= , i{ j,

0=inf {zk(t)
zl (t) } t # I, zl (t){0==inf {zk(t)

zl (t) } t # I", zl (t){0= , k{l.

Then ( y0 , ..., yr) and (z0 , ..., zs) satisfy (2.4) and so are the normalized
B-basis of U| I$ and U| I" , respectively. By the uniqueness of normalized
B-bases (see Proposition 2.5) vi= yi , i=0, ..., r; wj=zj , j=0, ..., s and
hence Un+1+k=V. K

Definition 4.6. Let U=Un+1 be an (n+1)-dimensional space of func-
tions on I with a normalized B-basis and t0 # Int(I ) whose potential knot
multiplicity in U is k. Let (v0 , ..., vr , w0 , ..., ws) be the normalized B-basis
of the space V defined in (2.7). We say that the B-algorithm corresponding
to t0 (associated to the matrix M of (2.10)) provides a knot insertion
algorithm if M=Mk&1 } } } M0 , with Mi an (n+i+2)_(n+i+1) stochastic
bidiagonal totally positive matrix and, for each p=0, ..., k&1, the system

(un+ p+1
0 , ..., un+ p+1

n+ p ) :=(v0 , ..., vr , w0 , ..., ws) Mk&1 } } } Mp (4.2)

is the normalized B-basis of its (n+1+ p)-dimensional generated space
Un+1+ p.

Remark 4.7. Let us observe that the fact that V| I$=Un+1 | I$ and V| I"

=Un+1 | I" implies that all intermediate spaces Un+1+ p of Definition 4.6
satisfy Un+1+ p | I$=Un+1 | I$ and Un+1+ p | I"=Un+1 | I" for all p=0, ...,
k&1. Thus Definition 4.6 is coherent with Definition 4.2.

Remark 4.8. If the B-algorithm provides a knot insertion algorithm the
control polygons Pn+ p+1

0 } } } Pn+ p+1
n+ p (see [16]) of a curve # with respect

to the normalized B-basis of Un+1+ p ( p=0, ..., k&1) are related by

(Pn+ p+1
0 , ..., Pn+ p+1

n+ p )T=Mp&1 } } } M0(Pn+1
0 , ..., Pn+1

n )T

=Mp&1(Pn+ p
0 , ..., Pn+ p

n+ p&1)T.

Each matrix Mp is bidiagonal, stochastic and totally positive and so it
defines a corner cutting algorithm. Let us now suppose that P0 } } } Pn is the
control polygon of a curve # with respect to the normalized B-basis of U
and that there exist k consecutive corner cutting algorithms providing
polygons with an increasing number of points and such that the final
polygon is the control polygon of # with respect to the normalized B-basis
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of V. Then each algorithm defines a bidiagonal stochastic and totally
positive matrix Qp . The matrix M :=Qk&1 } } } Q0 satisfies (2.10) and is so
the matrix of the B-algorithm.

The following result shows that elementary knot insertions are always
associated to corner cutting algorithms.

Theorem 4.9. Let U=Un+1 be an (n+1)-dimensional space of functions
on I with a normalized totally positive basis and t0 # Int(I ) whose potential knot
multiplicity in U is k. Then the B-algorithm corresponding to t0 provides a
knot insertion algorithm if and only if we can perform k consecutive elemen-
tary knot insertions with t0 .

Proof. If the B-algorithm corresponding to t0 provides a knot insertion
algorithm then we can perform k consecutive elementary knot insertions
with t0 by Definitions 4.2 and 4.6 and Remark 4.7. Let us prove the con-
verse. Let (un+ p+1

0 , ..., un+ p+1
n+ p ) ( p=0, ..., k&1) be the normalized B-bases

of the spaces Un+1+ p of (4.1) and let us consider the matrices Mp=
(m ( p)

ij )0�i�n+ p+1; 0� j�n+ p satisfying

(un+ p+1
0 , ..., un+ p+1

n+ p )=(un+ p+2
0 , ..., un+ p+2

n+ p+1) Mp . (4.3)

Let I j
i :=[t # I | u j

i (t){0] ( j=n+1, ..., n+k; i=0, ..., j&1). By Proposi-
tion 2.1, I j

i is an interval and supp(u j
i )=[: j

i , ; j
i ] with : j

0� } } } �: j
j&1 and

; j
0� } } } �; j

j&1 for j=n+1, ..., n+k. Let (l i, j
m )m # N (resp., (r i, j

m )m # N) be a
monotone decreasing (resp., increasing) sequence such that l i, j

m # I j
i and

limm � � l i, j
m =: j

i if : j
i � I j

i or l i, j
m =: j

i , \m # N if : j
i # I j

i (resp., r i, j
m # I j

i and
limm � � r i, j

m =; j
i if ; j

i � I j
i or r i, j

m =; j
i , \m # N if ; j

i # I j
i ). By Propositions

2.1(i) and 2.3, if i1<i2 we have for any j=n+1, ..., n+k

0=inf {
u j

i2
(t)

u j
i1
(t) } u j

i1
(t){0== lim

m � �

u j
i2
(l i1 , j

m )

u j
i1

(l i1 , j
m )

;

(4.4)

0=inf {
u j

i1
(t)

u j
i2

(t) } u j
i2

(t){0== lim
m � �

u j
i1

(r i2 , j
m )

u j
i2

(r i2 , j
m )

.

By Proposition 4.5, V=Un+k+1 and then by (4.3), it is sufficient to see
that each matrix Mp (0�p�k&1) is bidiagonal stochastic and non-
negative. Let m ( p)

f (i), i and m ( p)
l(i), i be the first and last nonzero elements of the

i th column of Mp . By (4.3),

un+ p+1
i =m ( p)

f (i), i u
n+ p+2
f (i) + :

l(i)&1

j= f (i)+1

m ( p)
ji ( p) un+ p+2

j +m ( p)
l(i), iu

n+ p+2
l(i) ,

i=0, ..., n+ p. (4.5)
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Since all functions are nonnegative, we derive from (4.4)

0� lim
m � �

un+ p+1
i (l f (i), n+ p+2

m )
un+ p+2

f (i) (l f (i), n+ p+2
m )

=m ( p)
f (i), i ,

0� lim
m � �

un+ p+1
i (r l(i), n+ p+2

m )
un+ p+2

l(i) (r l(i), n+ p+2
m )

=m ( p)
l(i), i

and so m ( p)
f (i), i>0 and m ( p)

l(i), i>0. Let us take j>i. Let us prove that
f ( j)> f (i). Otherwise, if f ( j)� f (i) then (m ( p)

f ( j), i �m
( p)
f ( j), j)�0 and there

exists K # R such that K>(m ( p)
f ( j), i �m

( p)
f ( j), j). Let us define the function

g := un + p +1
i & Kun + p+1

j . By (4.3), g = ( m ( p )
f ( j ) , i & Km ( p)

f ( j), j) un + p + 2
f ( j) +

�n+ p+2
h= f ( j)+1 (m ( p)

hi &Km ( p)
hj ) un+ p+2

h . From this formula we conclude that
:n+ p+2

f ( j) �inf supp(g). We also know that :n+ p+1
i �:n+ p+1

j and so g(t)=0,
\t�:n+ p+1

i . From (4.4) we have

lim
m � �

g(l i, n+ p+1
m )

un+ p+1
i (l i, n+ p+1

m )
= lim

m � �

un+ p+1
i (l i, n+ p+1

m )&Kun+ p+1
j (l i, n+ p+1

m )

un+ p+1
i (l i, n+ p+1

m )
=1.

Thus :n+ p+1
i =inf supp(g) and g�0 at a neighbourhood of inf supp(g).

Therefore, from (4.4) and (4.5) we obtain 0�limm � �(g(l f ( j), n+ p+2
m )�

un+ p+2
f ( j) (l f ( j), n+ p+2

m ))=m ( p)
f ( j), i&Km ( p)

f ( j), j , contradicting our choice of K. So
f ( j)> f (i). With a similar reasoning, we can deduce that l(i)<l( j). Thus
the matrix Mp must be a bidiagonal matrix (m ( p)

ij =0 if i< j or if i> j+1)
with nonnegative elements and then totally positive.

It remains to see that Mp is stochastic. Let e=(1, ..., 1)T # Rn+ p+1 and
d=(d0 , ..., dn+ p+1) :=Mpe. Since (un+ p+1

0 , ..., un+ p+1
n+ p ) is normalized,

postmultiplying both sides of (4.3) by e we get d0un+ p+2
0 + } } } +

dn+ p+1un+ p+2
n+ p+1=1. Since (un+ p+2

0 , ..., un+ p+2
n+ p+1) is also normalized, we

obtain d=(1, ..., 1) and so Mp is stochastic. K

5. EQUIVALENCE BETWEEN SYMMETRIC B-ALGORITHMS AND
KNOT INSERTION ALGORITHMS

The following result shows how symmetric B-algorithms are precisely the
B-algorithms providing knot insertion.

Theorem 5.1. Let (u0 , ..., un) be the normalized B-basis of a vector space
U of functions defined on I. Let t0 # Int(I ) be a k-admissible parameter in U.
Then the B-algorithm is symmetric if and only if we can perform k consecutive
knot insertions with t0 and t0 is a (k& p)-admissible parameter in the corre-
sponding spaces Un+ p+1, p=1, ..., k&1.
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Proof. Let us first suppose that the B-algorithm is symmetric. Let
(v0 , ..., vr) and (w0 , ..., ws) be the systems defined on (2.5) and (2.6), respec-
tively. From Remark 4.4 we know that k=r+s+1&n and that k coincides
with the potential knot multiplicity with t0 in U. By Remark 3.3, if k=1
then the matrices L and U corresponding to the left and right B-algorithm
are Ir+1 and Is+1 (respectively) moreover for k>1 the factorizations (2.14)
and (2.15) of L and U can be written as

L=Lk&2 } } } L0=\Ir&k+1

0
0
L� +=\Ir&k+1

0
0

L� k&2+ } } } \Ir&k+1

0
0

L� 0+ ,

U=Uk&2 } } } U0=\U�
0

0
Is&k+1+=\U� k&2

0
0

Is&k+1+ } } } \U� 0

0
0

Is&k+1+ ,

(5.1)

where L� =L� k&2 } } } L� 0 (resp., U� =U� k&2 } } } U� 0) is the factorization (2.14)
(resp., (2.15)) of the matrix L� (resp., U� ) of (3.1). Let Lk&1 :=Ir+1 ,
Uk&1 :=Is+1 . Since the B-algorithm is symmetric the diagonal entries
[u~ ( p)

p , ..., u~ ( p)
k&2 , 1, ..., 1], [1, ..., 1, 1&l� ( p)

p , ..., 1&l� ( p)
k&2] of U� p and L� p (respec-

tively) satisfy u~ ( p)
i =l� ( p)

i for each i= p, ..., k&2 and we can define Mp=
(m ( p)

ij )0�i�n+ p+1; 0� j�n+ p (0�p�k&1) as the (n+ p+2)_(n+ p+1)
bidiagonal matrix such that

Mp[1, ..., r+1] :=Lp ,

Mp[n+ p+2&s, ..., n+ p+2 | n+ p+1&s, ..., n+ p+1] :=Up .

Since Lp and Up ( p=0, ..., k&1) are nonsingular, bidiagonal, stochastic
totally positive matrices then Mp ( p=0, ..., k&1) is also stochastic, totally
positive and its column rank is n+ p+1. Let (v0 , ..., vr , w0 , ..., ws) be the
normalized B-basis of the space V defined in (2.7). Let (un+ p+1

0 , ..., un+ p+1
n+ p )

( p=0, ..., k&1) be the system defined by

(un+ p+1
0 , ..., un+ p+1

n+ p ) :=(v0 , ..., vr , w0 , ..., ws) M� p , M� p :=Mk&1 } } } Mp ,

(5.2)

and let Un+ p+1 be its generated space of functions on I. Clearly,

V#Un+k
#Un+k&1

# } } } #Un+2
#Un+1=U. (5.3)

Since by property (A) of Definition 2.9, U is C0 in (t0&=, t0+=) then, U | I$

is C0 in I$ & (t0&=, t0+=), (resp., U | I" is C0 in I" & (t0&=, t0+=)) and the
functions v0 , ..., vr (resp., w0 , ..., ws) are continuous on (t0&=, t0] (resp.,
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(t0 , t0+=)). Taking into account that (v0 , ..., vr) and (w0 , ..., ws) are
normalized and, using Corollary 2.12, (2.5) and (2.6), we derive

vi (t0)=0, i=0, ..., r&1, vr(t0)=1,

lim
t � t0+

w0(t)=1, lim
t � t0+

wi (t)=0, i=1, ..., s.

By (5.2), (un+k
0 , ..., un+k

n+k&1)=(v0 , ..., vr , w0 , ..., ws) Mk&1=(v0 , ..., vr+w0 , ...,
ws) and then one can easily deduce that Un+k is C0 in (t0&=, t0+=), i.e.,

Un+k�C(t0&=, t0+=). (5.4)

From (5.3) we know that Un+ p+1 ( p=0, ..., k&1) is formed by continuous
functions on (t0&=, t0+=).

Let us now prove that the system (un+ p+1
0 , ..., un+ p+1

n+ p ) is the normalized
B-basis of Un+ p+1 for all p=0, ..., k&1.

The system (v0 , ..., vr , w0 , ..., ws) is the normalized B-basis of V and the
matrix M� p of (5.2) is stochastic and totally positive because it is the
product of stochastic and totally positive matrices. Then from (5.2) we
deduce that (un+ p+1

0 , ..., un+ p+1
n+ p ) is a normalized and totally positive basis

of Un+ p+1. Since the column rank of M� p is n+ p+1 then the dimension
of Un+ p+1 is n+ p+1.

Let I i
j :=[: i

j , ; i
j]=supp(u i

j). Let (l j, i
m )m # N (resp., (r j, i

m )m # N) be a monotone
decreasing (resp., increasing) sequence such that l j, i

m # I i
j and limm � � l j, i

m =: i
j

if : i
j � I i

j or l j, i
m =: i

j , \m # N if : i
j # I i

j (resp., r j, i
m # I i

j and limm � � r j, i
m =; i

j if
;i

j � I i
j or r j, i

m =; i
j , \m # N if ; i

j # I i
j). From Propositions 2.1(i) and 2.3 we

derive

inf {un+ p+1
i (t)

un+ p+1
j (t) } un+ p+1

j (t){0== lim
m � �

un+ p+1
i (r j, n+ p+1

m )
un+ p+1

j (r j, n+ p+1
m )

,

0�i< j�n+ p;

inf {un+ p+1
i (t)

un+ p+1
j (t) } un+ p+1

j (t){0== lim
m � �

un+ p+1
i (l j, n+ p+1

m )
un+ p+1

j (l j, n+ p+1
m )

,

0� j<i�n+ p.

We are going to see now that if (un+ p+2
0 , ..., un+ p+2

n+ p+1) is a B-basis (and by
Proposition 2.3 satisfies (2.4)) then (un+ p+1

0 , ..., un+ p+1
n+ p ) is also a B-basis.

By construction un+ p+1
i =m ( p)

ii un+ p+2
i +m ( p)

i+1, iu
n+ p+2
i+1 and m ( p)

i+1, i=0 for
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each i=0, ..., n+ p&s&1, m( p)
ii =0 for each i=r+1, ..., n+ p and 0<m ( p)

ii

<1 for each i=n+p&s, ..., r. If we denote by q :=n+p+1 then (uq+1
0 , ...,

uq+1
q ) satisfies (2.4) and we can write

lim
m � �

uq
i (r j, q

m )
uq

j (r j, q
m )

=

lim
m � �

m ( p)
ii

u i+1
i (r j+1, q+1

m )
uq+1

j+1 (r j+1, q+1
m )

+m ( p)
i+1, i

uq+1
i+1 (r j+1, q+1

m )
uq+1

j+1 (r j+1, q+1
m )

m ( p)
jj

uq+1
j (r j+1, q+1

m )

uq+1
j+1 (r j+1, q+1

m )
+m( p)

j+1, j

=0,

if m( p)
j+1, j {0,

lim
m � �

uq+1
i (r j, q+1

m )
uq+1

j (r j, q+1
m )

=0,

if m( p)
j+1, j=0,

for all 0�i< j�q&1,

lim
m � �

uq
i (t)

uq
j (t)

=

lim
m � �

un+p+2
i+1 (l j+1, q+1

m )
un+p+2

j+1 (l j+1, q+1
m )

=0,

if m ( p)
jj =0,

lim
m � �

m ( p)
ii

uq+1
i (l j, q+1

m )
uq+1

j (l j, q+1
m )

+m ( p)
i+1, i

uq+1
i+1 (l j, q+1

m )
uq+1

j (l j, q+1
m )

m( p)
jj +m ( p)

j+1, j

uq+1
j (l j, q+1

m )

uq+1
j (l j, q+1

m )

=0,

if m ( p)
jj {0,

for all 0� j<i�q&1. Then (uq
0 , ..., uq

q&1) also satisfies (2.4) and therefore
by Proposition 2.3 is a B-basis of Uq. We can now conclude that each
system (un+ p+1

0 , ..., un+ p+1
n+ p ) p=0, ..., k&1 is a B-basis of Un+ p+1.

It can be checked that the matrix M� p=(m� ( p)
ij )0�i�r+s+1; 0� j�n+ p of

(5.2) satisfies

m� ( p)
ij =0, if i< j, 0�i�r

or if i> j+k& p, r+1�i�r+s+1;

m� ( p)
ij =0, if i> j, 0� j�r&k+ p

(5.5)
or if i< j+k& p, r+1� j�n+ p;

M� p[1, ..., r+1]=Lk&1 } } } Lp ;

M� p[r+2, ..., r+2+s | n+ p+1&s, ..., n+ p+1]=Uk&1 } } } Up .
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In particular M� 0[1, ..., r+1]=L, M� 0[r+2, ..., r+2+s | n+1&s, ...,
n+1]=U, hence M� 0 is the matrix of the B-algorithm and by (2.10),
Un+1=U. We can write now from (5.3)

V#Un+k
#Un+k&1

# } } } #Un+2
#U. (5.6)

Since by (2.5) and (2.6), for each i=0, ..., r, vi (t)=0, \t # I" and for each
i=0, ..., s, wi (t)=0, \t # I$ and taking into account (5.2) and (5.5) we can
deduce that

(un+ p+1
0 (t), ..., un+ p+1

r (t))=(v0(t), ..., vr(t)) Lk&1 } } } Lp , \t # I$;

un+ p+1
i (t)=0, \t # I$, i=r+1, ..., n+ p,

(5.7)
(un+ p+1

n+ p&s(t), ..., un+ p+1
n+ p (t))=(w0(t), ..., ws(t)) Uk&1 } } } Up , \t # I";

un+ p+1
i (t)=0, \t # I", i=0, ..., n+ p&s&1.

Therefore

V| I$=Un+ p+1 | I$=U| I$ , V| I"=Un+ p+1 | I"=U| I" , p=1, ..., k&1,

(5.8)

and we can perform k consecutive knot insertions with t0 . Since
(un+ p+1

0 , ..., un+ p+1
n+ p ) is a normalized B-basis of functions continuous at t0

satisfying (5.7) we can deduce as in Remark 2.6 that the number of basis
functions among (un+ p+1

0 , ..., un+ p+1
n+ p ) which do not vanish at t0 is k& p.

Let us now prove that for each p=1, ..., k&1, t0 is a (k& p)-admissible
parameter in Un+ p+1. By property (A) of Definition 2.9, we know that
there exists =>0 such that U�Ck&1(t0&=, t0+=). We are going to see
first that Un+ p+1�Ck& p&1(t0&=, t0+=) for p=1, ..., k&1.

The functions in U| I$ (resp., U| I") have continuous derivatives up to
order k&1 in (t0&=, t0+=) & I$ (resp., (t0&=, t0+=) & I"). Then from
(5.8)

Un+ p+1�Ck&1(t0&=, t0) & Ck&1(t0 , t0+=), p=1, ..., k&1. (5.9)

Let us suppose that Un+ p+2�Ck& p&2(t0&=, t0+=) and let us prove that
the derivatives of the functions in Un+ p+1 are continuous up to order
i :=k& p&1 (0�i�k&2). Taking into account that Un+ p+1 is a sub-
space of Un+ p+2 we conclude that Un+ p+1�C i&1(t0&=, t0+=). By (5.9),
Un+ p+1�Ci (t0&=, t0) & Ci (t0 , t0+=) and then we only have to see that

lim
t � t0+

un+ p+1 (i)
j (t)=un+ p+1 (i)

j (t0)= lim
t � t0&

un+ p+1 (i)
j (t), j=0, ..., n+ p.

(5.10)
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From (5.2) we can write

lim
t � t0

(un+ p+1 (i)
0 (t), ..., un+ p+1 (i)

n+ p (t))

= lim
t � t0

(v (i)
0 (t), ..., v(i)

r (t), w (i)
0 (t), ..., w(i)

s (t)) M� p . (5.11)

By (2.6), limt � t0& w (i)
j (t)=0 for all j=0, ..., s, and from (2.5) and Corollary

2.12 we get limt � t0& v (i)
j (t)=v (i)

j (t0)=0 for all j=0, ..., r&i&1. From (5.5)
and (5.11) we can deduce now that

lim
t � t0&

un+ p+1 (i)
j (t)

=un+ p+1 (i)
j (t0)=0, j=0, ..., r&i&1, j=r+1, ..., n+ p,

(5.12)
lim

t � t0&
(un+ p+1 (i)

r&i (t), ..., un+ p+1 (i)
r (t))

=(v (i)
r&i(t0), ..., v (i)

r (t0)) M� p[r&i+1, ..., r+1],

where M� p[r&i+1, ..., r+1]=L� p[k&i, ..., k] and L� p is the k_k matrix
defined by L� p :=Ik&1L� k&2 } } } L� p .

Analogously, by (2.5), limt � t0+ v (i)
j (t)=0 for all j=0, ..., r and from

(2.6) and Corollary 2.12 we obtain limt � t0+ w (i)
j (t)=0 for all j=i+1, ..., s.

From (5.5) and (5.11) we can deduce now that

lim
t � t0+

un+ p+1 (i)
j (t)=0, j=0, ..., r&i&1, j=r+1, ..., n+ p,

lim
t � t0+

(un+ p+1 (i)
r&i (t), ..., un+ p+1 (i)

r (t)) (5.13)

= lim
t � t0+

(w (i)
0 (t), ..., w (i)

i (t)) M� p[r+2, ..., r+i+2 | r&i+1, ..., r+1],

and M� p[r+2, ..., r+i+2 | r&i+1, ..., r+1]=U� p[1, ..., i+1] and U� p is the
k_k matrix defined by U� p :=Ik&1U� k&2 } } } U� p . Taking into account that U�
Ck&1(t0&=, t0+=) and Theorem 3.1 we deduce that limt � t0+ (w(i)

0 (t), ...,
w(i)

k&1(t)) = (u (i)
n&s (t0), ..., u (i)

r (t0)) U� &1 and that (u (i)
n&s (t0), ..., u (i)

r (t0)) =
(v (i)

n&s(t0), ..., v (i)
r (t0)) L� . Therefore

lim
t � t0+

(w (i)
0 (t), ..., w (i)

k&1(t)) U� p=(v (i)
n&s(t0), ..., v (i)

r (t0)) L� U� &1U� p

=(0, ..., 0, v (i)
r&i (t0), ..., v (i)

r (t0)) L� U� &1U� p .

(5.14)

If we define M� :=L� p&1 } } } L� 0 U� &1
0 } } } U� &1

p&1 , then L� U� &1U� p=L� pM� . Since
the B-algorithm is symmetric we can apply Lemma 3.5 and then obtain
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that M� [k&i, ..., k | 1, ..., 1+i]=Ii+1 and M� [k&i, ..., k | i+2, ..., k] is a
null matrix. Then from (5.14) we have that

lim
t � t0+

(w (i)
0 (t), ..., w (i)

i (t)) U� p[1, ..., i+1]

=(v (i)
r&i(t0), ..., v (i)

r (t0)) L� p[k&i, ..., k]. (5.15)

From (5.12), (5.13), and (5.15) we conclude that (5.10) holds and so Un+ p+1

�Ck& p&1(t0&=, t0+=). By (5.4), Un+k�C(t0&=, t0+=), and we can now
conclude that Un+k&1�C1(t0&=, t0+=). Iterating the previous reasoning we
obtain that Un+ p+1�Ck& p&1(t0&=, t0+=) for p=1, ..., k&1.

Since t0 is a k-admissible parameter in U and hence satisfies property (B)
of Definition 2.9, by Remark 2.10 and (5.6), we can deduce that there exist
k& p functions fi # Un+ p+1 (i=0, ..., k& p&1) satisfying f ( j)

i (t0)=0,
j=0, ..., i&1; f (i)

i (t0){0 and deduce from Remark 2.10 that property (B)
holds in Un+ p+1. Therefore t0 is a (k& p)-admissible parameter.

Let us now see the converse. Let us assume that there exist k spaces
of functions Un+k+1

#Un+k
#Un+k&1

# } } } #Un+2
#Un+1(:=U) with a

normalized B-basis such that t0 is a (k& p)-admissible parameter of Un+ p+1

( p=1, ..., k&1) and

Un+ p+1 | I$=Un+1 | I$ , Un+ p+1 | I"=Un+1 | I" , p=1, ..., k,

and let us prove that the B-algorithm is symmetric. By Proposition 4.5,
Un+k+1=V and therefore

un+k+1
i =vi , i=0, ..., r; un+k+1

i =wi&r&1 ; i=r+1, ..., n+k.

(5.16)

Let (un+ p+1
0 , ..., un+ p+1

n+ p ) be the normalized B-basis of Un+ p+1. By Theorem
4.9, the matrix Mp=(m ( p)

ij )0�i�n+ p+1; 0� j�n+ p of (4.2) is bidiagonal
stochastic and totally positive. Let us observe that (un+ p+1

0 , ..., un+ p+1
n+ p )=

(un+ p+2
0 , ..., un+ p+2

n+ p+1) Mp ( p=0, ..., k&1). Since t0 is a (k& p)-admissible
parameter of Un+ p+1 for each p=1, ..., k&1, we deduce from Remark 3.2
that

un+ p+1
i =vi , i=0, ..., r&k+ p;

(5.17)
un+ p+1

i =wi&n& p+s , i=r+1, ..., n+ p.

From (5.16) and (5.17) we have, for each p=0, ..., k&1, that un+ p+1
i =

un+ p+2
i , i=0, ..., r&k+ p, and un+ p+1

i =un+ p+2
i+1 , i=r+1, ..., n+ p.

Therefore

m ( p)
ii =1, i=0, ..., r&k+ p, m ( p)

i+1, i=1, i=r+1, ..., n+ p. (5.18)
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for each p=0, ..., k&1. In particular,

Mk&1[1, ..., r+1]=Ir+1 ,
(5.19)

Mk&1[r+2, ..., n+k+1 | r+1, ..., n+k]=Is+1 .

Taking into account that, by (2.5) and (2.6), vi (t)=0, \t # I" (i=0, ..., r)
and wi (t)=0, \t # I$ (i=0, ..., s), that (u0 , ..., un)=(v0 , ..., vr , w0 , ..., ws)
Mk&1 } } } M0 and (5.19), we deduce that (u0 , ..., ur)=(v0 , ..., vr) Mk&2[1, ...,
r+1] } } } M0[1, ..., r+1], \t#I$ and L=Mk&2[1, ..., r+1] } } } M0[1, ..., r+1]
is the factorization (2.14) of the matrix of the left B-algorithm. Analogously,
(un & s , ..., un) = ( w0 , ..., ws) Mk&2 [ n + k & s, ..., n +k | n + k & s & 1, ...,
n + k & 1] } } } M0[ n + 2 & s, ..., n + 2 | n + 1 & s, ..., n+1] and U =
Mk&2[n+k&s, ..., n+k | n+k&s&1, ..., n+k&1] } } } M0[n+2&s, ...,
n+2 | n+1&s, ..., n+1] is the factorization (2.15) of the matrix of the
right B-algorithm and hence the B-algorithm is symmetric. K

6. B-ALGORITHMS CORRESPONDING TO ADMISSIBLE
PARAMETERS ARE SYMMETRIC

In the following theorem we shall see that B-algorithms corresponding
to admissible parameters are always symmetric and so, by the results of
previous sections, always provide a knot insertion algorithm.

Theorem 6.1. Let U be a vector space of functions defined on I with a
normalized totally positive basis. If t0 # Int(I ) is a k-admissible parameter in
U then its corresponding B-algorithm is symmetric.

Proof. By Proposition 2.5, U has a unique normalized B-basis (u0 , ..., un).
By Remark 3.3, if k=1 the B-algorithm is symmetric. Let us now suppose that
k>1 and let L=Lk&2 } } } L0 be the factorization (3.6) of the matrix L of
(2.12) associated to the left B-algorithm. Let us first assume that the diagonal
entries of Ll (l=0, ..., k&2), given by [1, ..., 1, 1&l(l )

l , ..., 1&l (l)
k&2], satisfy

l(l)
i {0 for all i=l, ..., k&2. Let us define V� l as the k_k upper bidiagonal

stochastic matrix with diagonal entries [l (l)
l , ..., l (l )

k&2 , 1, ..., 1]. Let V� :=
V� k&2 } } } V� 0 . Since l (l )

i {0 for all i=l, ..., k&2 then V� l (l=0, ..., k&2) is non-
singular and we can define T� =(t~ ij)1�i, j�k as T� :=L� k&2 } } } L� 0V� &1

0 } } } V� &1
k&2 .

It can be easily checked that T� satisfies the hypotheses of Lemma 3.5 and
then it satisfies

t~ ij=0, i+ j>k+1; t~ i, k+1&i=(&1)k+i `
k&2

j=i&1

1&l (i&1)
j

l (i&1)
j

. (6.1)
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Let V be the (s+1)_(s+1) matrix given by V=( V�
0

0
Is&k+1

). By construc-
tion V� is stochastic and so V is also stochastic. Let us define the system
(z0 , ..., zs) as

(z0 , ..., zs) :=(un&s , ..., un) V&1. (6.2)

If we see that (z0 , ..., zs) is the normalized B-basis of U| I" then V is the
matrix associated to the right B-algorithm. In this case the B-algorithm is
symmetric and the result follows. Since by (2.12), u0(t)= } } } =un&s&1(t)
=0, \t # I", we deduce from 1=�n

i=0 u i (t), \t # I that (un&s , ..., un) is
normalized on I". Let e=(1, ..., 1)T # Rs+1. Using that V is stochastic we
derive from (6.2) that z0(t)+ } } } +zs(t)=(z0(t), ..., zs(t)) Ve=(un&s(t), ...,
un(t)) e=un&s(t)+ } } } +un(t)=1, \t # I", and therefore (z0 , ..., zs) is
normalized on I". Thus it remains to see that (z0 , ..., zs) is a B-basis of
U | I" . Since (u0 , ..., un) is a B-basis, the functions ui # Rn&i (U) \i and, by
(2.9), ui # Rn&i (U| I"). Each function zi is a linear combination of un&s , ...,
ui because V&1 is upper triangular. By (2.3),

zi # Rn&i (U | I")�Rs&i (U| I"), i=0, ..., s. (6.3)

Since V&1=( V� &1

0
0

Is&k+1
) and using that by Remark 2.6, n&s+k&1=r we

have that

zk(t)=un&s+k(t)=ur+1(t), ..., zs(t)=un(t), t # I" (6.4)

and that

(z0(t), ..., zk&1(t))=(un&s(t), ..., ur(t)) V� &1, t # I". (6.5)

Let (v0 , ..., vr , w0 , ..., ws) be the normalized B-basis of V. In particular
(w0(t), ..., ws(t)), t # I" is the normalized B-basis of U| I" . By (6.4) and
Remark 3.2, for each j=k, ..., s, zj (t)=wj (t), \t # I". Therefore we have
that

zj # L j (U| I"), j=k, ..., s. (6.6)

By property (A) of Definition 2.9, the functions in U are C(k&1) in
(t0&=, t0+=) and then, given j # [0, ..., k&1], we deduce from (6.5) and
(3.2) that

(z( j)
0 (t0), ..., z ( j)

k&1(t0))= lim
t � t0

+
((u j)

n&s(t), ..., u ( j)
r (t)) V� &1)

= lim
t � t 0

&
((v( j)

r&k(t), ..., v ( j)
r (t)) L� V� &1)

=(v ( j)
r&k(t0), ..., v( j)

r (t0)) T� . (6.7)
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We know from Corollary 2.12 that

v ( j)
r&l (t0)=0, \l> j, v ( j)

r& j (t0){0. (6.8)

Taking into account (6.8) and (6.1), we deduce from (6.7) that

z ( j)
i (t0)=0, \i> j (6.9)

and z( j)
j (t0)=v ( j)

r& j(t0) t~ k& j, j+1 . Since the functions vi 's are nonnegative,
from (6.8) and Taylor formula we deduce that (&1) ( j) v ( j)

r& j (t0)>0. By
(6.1), the sign of t~ k& j, j+1 is strict and coincides with (&1) j. Therefore

z ( j)
j (t0)>0. (6.10)

Since (6.9) holds for all j # [0, ..., k&1], we deduce from Proposition 2.11
that

zj # L j (U | I"), j=0, ..., k&1. (6.11)

Therefore we can summarize (6.3), (6.6), and (6.11) with

zi # Rs&i (U | I") & Li (U | I"), i=0, ..., s. (6.12)

By Definition 2.2, wi # Rs&i (U | I") & Li (U| I"), i=0, ..., s. By Corollary
3.9(i) of [5], dim(Rs&i (U| I") & Li (U| I"))=1 for all i=0, ..., s and from
(6.12) we deduce that each zi=:wi and then zi is either nonnegative or
nonpositive. By (6.4), the functions zk , ..., zs are nonnegative on I". From
(6.10) and Taylor formula we deduce that the functions zi (i=0, ..., k&1)
are nonnegative on a neighbourhood to the right of t0 and therefore they
are nonnegative on I". By Corollary 3.9(ii) of [5], (z0 , ..., zs) is a B-basis
of U| I" .

Let us now suppose that there exists l (l0 )
i0

=0 for some l0 # [0, ..., k&2],
i0 # [l0 , ..., k&2] and we shall obtain a contradiction. Let {m :=1�m, m # N.
Let us define L� l ({m) (l=0, ..., k&2) as the k_k lower bidiagonal stochastic
matrix whose diagonal entries [1, ..., 1, 1&l (l )

l ({m), ..., 1&l (l )
k&2({m)] with

l (l )
i ({m) :={l (l )

i

{m

if l (l )
i {0

if l (l )
i =0

, i=l,..., k&2.

Let us now define V� l ({m) (l=0, ..., k&2) as the k_k upper bidiagonal
stochastic matrix whose diagonal entries are [l (l )

l ({m), ..., l (l )
k&2({m), 1, ..., 1].

Let V� ({m) :=V� k&2({m) } } } V� 0({m), L� ({m) :=L� k&2({m) } } } L� 0({m) and

V({m) :=\V� ({m)
0

0
Is+1&k+ , L({m) :=\Ir+1&k

0
0

L� ({m)+ .
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Let (u0, m , ..., un, m) (m # N) be the system of functions defined on I such
that

(u0, m , ..., ur, m) :=(u0 , ..., ur) L&1L({m); ui, m :=u i , i=r+1, ..., n.

(6.13)

By construction limm � � L({m)=L and therefore

lim
m � �

(u0, m(t), ..., un, m(t))=(u0(t), ..., un(t)), \t # I. (6.14)

Taking into account that L&1, L({m) are stochastic matrices and that
(u0 , ..., un) is normalized on I we deduce that (u0, m , ..., un, m) (m # N) is also
a normalized system on I. Since L&1L({m)=( Ir+1&k

0
0

L� &1 L� ({m )) then u i, m=u i

for all i=0, ..., r&k. Moreover, by (2.11), ui (t)=ui, m(t)=0, \t # I", for all
i=0, ..., r&k. Therefore 1=�n

i=0 ui, m(t)=�n
i=r&k+1 u i, m(t), \t # I". Since

l (l )
i ({m){0 (l=0, ..., k&2, i=l, ..., k&2) then V({m) is nonsingular and we

can define the system (z0, m , ..., zs, m) :=(un&s, m , ..., un, m) V&1({m) (m # N)
and so

(z0, m , ..., zk&1, m)=(un&s, m , ..., ur, m) V� &1({m). (6.15)

Taking into account (6.13) and that, by Remark 2.6, n+k&s=r+1 we
deduce that

zi, m=un&s+i, m=un&s+i , i=k, ..., s. (6.16)

Reasoning as we have done above with the system defined in (6.2) one
can deduce that (z0, m , ..., zs, m) (m # N) is a normalized system on I" and
that

z ( j)
i, m(t0)=0, j<i; z (i)

i, m(t0)>0, i=0, ..., k&1. (6.17)

Moreover, since (u0 , ..., un) is formed by continuous functions at t0 then
(u0, m , ..., un, m) and (z0, m , ..., zs, m) (m # N) are also formed by continuous
functions at t0 and, by (6.17) and Taylor formula, there exists 0<$<=
such that zi, m(t)>0, \t # [t0 , t0+$), for all i=0, ..., k&1. Since by (6.16)
zi, m=un&s+i for all i=k, ..., s and (u0 , ..., un) is formed by nonnegative
functions then (z0, m , ..., zs, m) is normalized and formed by nonnegative
functions on [t0 , t0+$). Therefore, given t # [t0 , t0+$), (zi, m(t))m # N is
contained in the compact set [0, 1] and there exists ({mj(t)

) j(t) # N�({m)m # N

such that limj(t) � � {mj(t)
=0 and (zi, mj(t)

(t)) j(t) # N is a convergent sequence.
Let us define

z~ i (t) := lim
j(t) � �

z i, mj (t)
(t), t # [t0 , t0+$)
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for i=0, ..., k&1 and V� (0) :=limm � � V� ({m). Since limm � � l (l0 )
i0

({m)=0
then V� l0

(0) :=limm � � V� l0
({m) is a singular matrix and therefore V� (0) is

singular. From (6.14) and (6.15) we can write

(un&s(t), ..., ur(t))= lim
j � �

(z0, mj (t)
(t), ..., zk&1, mj (t)

(t)) V� ({mj (t)
)

=(z~ 0(t), ..., z~ k&1(t)) V� (0), t # [t0 , t0+$). (6.18)

By (6.18) and the singularity of V� (0), (un&s , ..., ur) is a linearly dependent
system of functions on [t0 , t0+$) and this contradicts that, by Lemma
2.13, un&s , ..., ur are linearly independent on any interval J such that
t0 # J�I. K

We finish this section with some matricial aspects for symmetric
B-algorithms.

Remark 6.2. Let us now observe that the matrix M of the B-algorithm
corresponding to admissible parameters can be always factorized as a product
of rectangular totally positive matrices and hence is also totally positive. A
nonsingular totally positive matrix is called almost strictly totally positive
(ASTP) if it satisfies that det A[:, ;]>0 if and only if its diagonal entries
are all positive. Theorem 4.4 of [10] characterizes this class of matrices in
terms of their bidiagonal factorizations. If the B-algorithm is symmetric
then one can check (applying that result to factorizations (2.14) and (2.15))
that the matrices L and U corresponding to the left and right B-algorithm
are both ASTP.

7. EXAMPLES

In this section we shall see many examples of spaces with symmetric
B-algorithms. However, we start with an example showing that when
hypotheses of Theorem 6.1 do not hold there exist B-algorithms which are
not symmetric.

Example 7.1. Let U=span[u0(t), u1(t)], t # [0, 1],

u0(t) :={
1&t
2&2t

3

if 0�t�1�4

if 1�4<t�1,
u1(t) :={

t
1+2t

3

if 0�t�1�4

if 1�4<t�1.

It can be checked by using Proposition 2.3 that (u0 , u1) form a (normalized)
B-basis of U. Let t0=1�4 and let us consider the corresponding B-algorithm.
Then the normalized B-basis (v0 , v1 , w0 , w1) of V satisfies (v0(t), v1(t))=
(1&4t, 4t), t # I$=[0, 1�4], (w0(t), w1(t))=( 4&4t

3 , 4t&1
3 ), t # I"=(1�4, 1],
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and one has that the matrix L of (2.12) is L=( 1
3�4

0
1�4) and the matrix U

of (2.13) is U=( 1�2
0

1�2
1 ). Therefore the B-algorithm is not symmetric. Let us

observe that the basis functions do not vanish at t0=1�4 and they are not
continuous at this parameter, and so t0=1�4 is not an admissible parameter.

The following example illustrates that continuity of the functions at a
given parameter can be sufficient in order to get a symmetric B-algorithm
(which provides a knot insertion algorithm).

Example 7.2. Let U=span[u0(t), u1(t), u2(t)], t # [0, 2], I$ :=[0, 1],
I"=(1, 2].

u0(t) :={1&t2,
0,

t # I$
t # I",

u1(t) :={t2,
(2&t)2,

t # I$
t # I",

u2(t) :={0,
1&(2&t)2,

t # I$
t # I".

It can be checked by using Proposition 2.3 that (u0 , u1 , u2) form a (nor-
malized) B-basis of U. The number of basis functions which do not vanish
at t0=1 is 1 and this is a 1-admissible parameter. Therefore, by Theorem
6.1, the B-algorithm is symmetric. In fact the matrix M of the B-algorithm
(see (2.10)) is

M=\
1
0
0
0

0
1
1
0

0
0
0
1+ .

In the following example we apply the knot insertion algorithm obtained
with the procedure given in Theorem 5.1 in the space of polynomial splines
and we obtain the well known de Boor�Cox algorithm.

Example 7.3. Let x :=[a=x0= } } } =xn&1<xn� } } } �xl+n&2<
xl+n&1= } } } =xl+2n&2=b]/R, be an ordered sequence of real values
satisfying 0<xn+i&x i for all i=0, ..., l+n&2. Let Sn

x be the space of
spline functions of degree n defined on I=[a, b] with knot vector x. The
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basis functions of this space can be defined recursively by the Mansfield�
de Boor�Cox recursion (see [9, Chap. 10])

N 0
i (x)={1,

0,
if x i&1�x<xi

elsewhere
;

N k
i (x)=

x&x i&1

x i+k&1&xi&1

N k&1
i (x)+

x&xi

xi+k&xi
N k&1

i+1 (x)

for k=1, ..., n and then supp(N n
i )=[xi&1 , x i+n]. In Theorem 4.6 of [5] it

was proved that (N n
1 , ..., N n

l+n&1) is the normalized B-basis of Sn
x . Let us

suppose that x
}
�t0<x

}+1 and 0�p�n is the multiplicity of t0 as knot of
x (i.e., x

}& p<x
}& p+1= } } } =x

}
=t0). By considering the support of the

basis functions one can deduce that the dimension of Sn
x | I$ (resp., Sn

x | I")
is r+1 :=}& p+1 (resp., s+1 :=l+2n&}&1) and hence the potential
knot multiplicity of t0 is k :=n+1& p which coincides with the number of
basis functions that do not vanish at t0 . The normalized B-basis of Sn

x | I$

is the B-spline basis of degree n and knot vector x$ :=[(a=) x0= } } } =
xn&1<xn� } } } �x

}&p<x
}&p+1= } } } =x

}
=t0= } } } =t0] and the normalized

B-basis of Sn
x | I" is the B-spline basis of degree n and knot vector x" :=

[ x
} & p + 1 = } } } = x

}
= t0 = } } } = t0 < x

} + 1 � } } } � xl + n & 2 < xl + n & 1

= } } } =xl+2n&2]. Let L=Lk&2 } } } L0 and U=Uk&2 } } } U0 be the factori-
zations (2.14) and (2.15) of the matrices satisfying (2.12) and (2.13), respec-
tively. The diagonal entries 1&l ( j)

i (0�i�r) and u ( j)
i (0�i�s) of Lj and

Uj , respectively, satisfy 1&l ( j)
i =1 for i=0, ..., }&n+ j, u ( j)

i =1 for i=
n& p& j, ..., l+2n&}&2 and l ( j)

i =(t0&xi )�(xi+n& j&xi )=u ( j)
i&(}&n+1+ j)

for i=}&n+ j+1, ..., }& p. The corresponding B-algorithm is so symmetric
and the knot insertion algorithm constructed in Theorem 5.1 coincides with
the well known de Boor�Cox algorithm.

As we are now going to illustrate in the particular example of the space
of polynomials, we can always apply our techniques to any space of func-
tions with symmetric B-algorithms and obtain new spaces associated to
knot vectors.

Example 7.4. If U=Pn([a, b]) is the space of polynomials of degree
less than or equal to n defined on [a, b], we know that the normalized
B-basis (u0 , ..., un) of U is the Bernstein basis ui (t) :=( n

i )(
t&a
b&a) i ( b&t

b&a)n&i,
i=0, ..., n. Given t0 # (a, b), then the normalized B-bases (v� 0 , ..., v� n) and
(w� 0 , ..., w� n) of U | I$ and U | I" , respectively, are given by v� i (t) :=
( n

i )(
t&a
t0&a) i ( t0&t

t0&a)n&i, t # I$; w� i (t) :=( n
i )(

t&t0
b&t0) i ( b&t

b&t0
)n&i, t # I", i=0, ..., n. The

potential knot multiplicity of t0 in U is k :=n+1. Let L=Ln&1 } } } L0 and
U=Un&1 } } } U0 be the factorizations (2.14) and (2.15) of the matrices
satisfying (2.12) and (2.13), respectively. If 1&l ( j)

l and u ( j)
l&( j+1) are the
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diagonal entries of Lj and Uj , respectively then l ( j)
l = b&t0

b&a =u ( j)
l&( j+1) for all

l= j+1, ..., n and the corresponding B-algorithm is symmetric. The system
(v0 , ..., vn , w0 , ..., wn) with vi and wj defined in (2.5) and (2.6) coincides with
the B-spline basis of degree n defined on [a, b] and knot vector xn+1 :=
[x0= } } } =xn<xn+1= } } } =x2n+1<x2n+2= } } } =x3n+2] with xi=a,
i=0, ..., n, xi=t0 , i=n+1, ..., 2n+1 and x i=b, i=2n+2, ..., 3n+2. Its
generated space is V=Sn

xn+1
([a, b]). Our B-algorithm provides a knot

insertion algorithm and let us observe that the system defined in (4.2) is the
B-spline basis of degree n and knot vector xp :=[x0= } } } =xn<xn+1

= } } } =xn+ p<xn+ p+1= } } } =x2n+1+ p] with x i=a, i=0, ..., n, x i=t0 ,
i=n+1, ..., n+ p and xi=b, i=n+ p+1, ..., 2n+ p+1. The generated
space is Un+ p+1=Sn

xp
([a, b]).

We now present extended Tchebycheff spaces and Tchebycheffian spline
spaces as particular examples where we can apply our techniques to obtain
knot insertion algorithms.

Example 7.5. A system of functions (u0 , ..., un) in Cn(I ) and its
generated space U are called extended Tchebycheff if for any t0�t1� } } } �
tn det(u (mi )

j (t i))0�i, j�n>0 (mi=*[k<i | tk=t i]). Let 2 :=[a=x0<x1

< } } } <xk<xk+1=b] be a partition of I=[a, b] and let M :=
[m1< } } } <mk] be a vector of integers with 1�mi�n+1 for all
i=1, ..., k. The space of Tchebycheffian spline functions with knots x1 , ..., xk

of multiplicities m1 , ..., mk is defined in Chapter 9 of [19] as

S(U, M, 2)={s: I � R | si :=s| (xi , xi+1 ) # U,
s( j&1)

i&1 (xi)=s( j&1)
i (xi),

i=0, ..., k
j=1, ..., n+1&mi ; i=1, ..., k= .

Polynomial, exponential and hyperbolic B-splines are included in the class
of Tchebycheffian splines. In Theorem 5.1 of [6] it was proved that an
extended Tchebycheff space of functions defined on a compact interval
I=[a, b] has always a totally positive basis and hence B-bases. From the
definition it follows that the Hermite interpolation problem on an extended
Tchebycheff space always has a (unique) solution. The number of zeros
(counted with their multiplicity) of a nonzero function in an (n+1)-dimen-
sional extended Tchebycheff space is less than or equal to n. Taking into
account the previous facts one can easily deduce from Propositions 2.1(i)
and 2.3 that if (b0 , ..., bn) is a B-basis of an extended Tchebycheff space U
of functions defined on [a, b] then

b ( j)
i (a)=0, j=0, ..., i&1, b ( j )

i (b)=0, j=0, ..., n&i&1

b (i )
i (a){0, b (n&i )

i (b){0.
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Given an extended Tchebycheff space U of functions defined on [a, b],
properties (A) and (B) of Definition 2.9 are clearly satisfied by all
parameters in (a, b) and so they are admissible. Then, given any extended
Tchebycheff space with a normalized totally positive basis by Theorem 6.1,
the corresponding B-algorithms are symmetric and, by Theorem 5.1, they
provide a knot insertion algorithm. We can iterate this procedure with
other parameters. In this process, we transform extended Tchebycheff spaces
into extended Tchebycheffian spline spaces and, by construction, also obtain
the normalized B-bases of the obtained spaces.

Example 7.6. In [12] there are classes of ``generalized B-spline'' functions
which includes Tchebycheffian B-splines and certain trigonometric B-splines.
These ``generalized B-splines'' form a locally supported totally positive
basis (see Section 1 and Theorem 4 of [12]). It can be checked, by using
property (B) of Section 1 of [12] joined with Propositions 2.1(i) and 2.3,
that it is a B-basis. Let us see that if the generated space has a normalized
totally positive basis then a knot insertion algorithm can be derived.
Property (A) of Definition 2.9 is clearly satisfied by interior parameters.
From Theorem 3 of [12] we can deduce the existence of functions fi whose
derivatives satisfy f ( j)

i =$ ij (0� j�i) and, by Remark 2.10, property (B) of
Definition 2.9 also holds, and so interior parameters are all admissible.
Then, by Theorem 6.1 the corresponding B-algorithms are symmetric and,
by Theorem 5.1, they provide a knot insertion algorithm.
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